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UNCERTAINTIES ON NETWORKS (PI: N. Cressie)

Objectives

Networks as models can be found in many disciplines, including biology, computer science, engi-
neering, geography, mathematics, physics, sociology, and statistics. However, there are uncertain-
ties associated with imperfect knowledge of a network’s nodes and dependencies, as well as with
noise-corrupted variables defined on the network. Networks have become important components of
complex representations of reality and, when built into a hierarchical statistical modeling structure,
they allow partitioning of joint probability distributions that seem unmanageable at first glance.
Thus, a statistical approach to network analysis is natural from both a probabilistic and an in-
ferential point of view. In this research, we study spatial and spatio-temporal networks through
graph theory (e.g., Lauritzen, 1996; Cressie and Davidson, 1998). A chain graph is defined to be a
combination of undirected graphs and acyclic directed graphs (ADGs), with the overall structure
being guided by an ADG. The undirected parts account for the spatial dependence, the directed
parts can be used to account for the temporal dependence, and the guiding ADG captures the
spatio-temporal interactions.

Impact

Models in space and space-time are essential for representing the battlespace. For example, they
are used in estimating a dynamically evolving danger function or in predicting a waypoint in the
presence of uncertainties. In netcentric warfare, the uncertainties reside not only in the variables
at the network’s nodes, but also in the presence or absence of network nodes and the dependencies
between the nodes. This occurs when a node may only be operational intermittently or when the
enemy’s network is unknown, apart from a few obvious nodes. In this research, we incorporate
spatial and spatio-temporal dependencies into the analysis of network data.
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Technical Summary

Recently, a great amount of attention has been paid to random networks, which are widely used
to represent complex relationships in many areas (e.g., World Wide Web communications, social
studies, epidemic dynamics, molecular-evolution processes, etc.). According to Lauritzen (1996),
a random network can be modeled through a mathematical graph defined as G = (V,E), which
consists of a finite set of nodes (or vertices), V, and a set of edges, E, where nodes represent
individuals or objects, while edges specify their relationships.

Graphs can be further divided into different classes, according to the nature of their edges as well
as the paths formed by edges. Our research focuses on one type of graph called a chain graph, made
up of undirected graphs and acyclic directed graphs (ADGs or sometimes abbreviated as DAGs).
ADGs consist of only directed edges without any cycles, and thus they can specify direct relations
(e.g., conditional dependencies, causal relations) between variables defined on the graph’s nodes;
see Lauritzen (1996), Kolaczyk (2009), and Koski and Noble (2009) for further details.

In recent research on statistical-dependence modeling, Bayesian networks are widely used to char-
acterize joint multivariate probability distributions, which can define properties of conditional in-
dependence or causal relations between variables in a complex process. In the research conducted
under this grant, we incorporate spatial and spatio-temporal dependencies into the analysis of
network data.

An explosion of ideas has been generated on dependence modeling based on networks (e.g., Friedman
et al., 2000; Ellis and Wong, 2008). According to Koski and Noble (2009), a Bayesian network, BN =
(G, p), can be modeled through an ADG, G, and its probability distribution, p. The Erdos-Rényi
model (E-R model) has been widely used in the past to capture the probability distributions of ADGs
(Erdés and Rényi, 1959). This model belongs to the family of ezponential random graph models
(ERGM) (e.g., Hunter and Handcock, 2005), and it assumes equal and independent probabilities
of having an edge between any pair of nodes within a graph (referred as “equal and independent
assumptions”). The E-R model is also frequently used as a prior distribution for ADGs with discrete
data. The main appeal of the E-R model is that it can lead to a closed-form posterior distribution
(e.g., Ellis and Wong, 2008). However, in reality, the equal and independent assumptions of the
E-R model are not realistic, especially for high-dimensional networks. Furthermore, its sufficient
statistic captures only one property of a random graph, namely the number of edges; all the other
important properties, such as the directions of edges, the patterns formed by the edges are ignored.

In what follows, we consider more general ADGs, based on the level-set definition proposed by
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Cressie and Davidson (1998). We develop a sequential-modeling strategy, through which we can
capture the probability distributions of ADGs, but we avoid strong assumptions such as the equiva-
lent and independent assumptions. Furthermore, our level-set model allows more graphical informa-
tion to be used; for example, we consider not only the number of edges, but also certain structure
of the ADG, including levels of the ADG, connections between levels (definition of “levels” and
“connections” will be given later), directions of edges between nodes, etc. Based on our level-set
modeling strategy, we also develop an algorithm to generate ADGs efficiently.

We introduce the following notation

¢ G denotes an ADG, and G = (V,E).

e V denotes the set of finite nodes in G; that is, V = {v,, ..., v, }, where n is the total number
of nodes and n is given.

E denotes the set of directed edges in G:

E = {(vi,v;) : there is a directed edge from v; to v;;v;,v; € V}. (1)

ch(v;) denotes the children of node v;; that is, for v; € V,
ch(v;) = {v; € V : (v;,v;) € E}. (2)

pa(v;) denotes the parents of node v;; that is, for v; € V,

pa(v) = {v; € V : (v;,) € E}. (3)

V nin denotes the set of vertices with no parents; that is,

Vmin = {v; € V : pa(v;) = @}. (4)

covr(B) denotes the cover of a subset of nodes B C V, which is the subset of nodes that are
not in B but whose parents are all in B (Cressie and Davidson, 1998); that is,

covr(B) = {v; € V : pa(v;) C B and v; ¢ B}. (5)

Notice that the definition of the cover of a subset of nodes is different from the Markov blanket
(e.g., Pearl, 1988); for a set of nodes, the Markov blanket consists of their children, their parents, as
well as their children’s other parents. In other words, the Markov blanket contains all the variables
that shield the subset of nodes from the rest of the network. However, covr(B) only includes certain
descendants: covr(B) C ch(B).

From Cressie and Davidson (1998), an ADG with a finite number of nodes has level sets L =
{Lo, ..., L4}, formed by a specific partition of the ADG that can be specified recursively as,

- Vmim 1f1,= O7
L':{ covr(U{Lx : k=0,...,i—1}), if0<i<d, (6)

where (d + 1) is the total number of level sets. For an ADG with n nodes, it is straightforward to
see that 1 < d+ 1 < n. The important properties of level sets can be summarized below (Cressie
and Davidson, 1998):



1. Every node of an ADG should belong to one and only one level set; specifically,
LiﬂLj=21foriaéj=0,...,d. (7)

In other words, the (d + 1) level sets, L = {Ly, ..., Ly}, together form a (d + 1)-nonempty-
partition of the ADG.

2. Every node in a non-minimal level set should have at least one parent from its adjacent level
set that is of lower order; that is, for any v € L;, 0 < ¢ < d, then there exists a node u € L;_,,
such that u € pa(v).

3. The directed edges can only go from nodes in lower-order level sets to nodes in higher-order
level sets; that is, if v,u € V, v € L;, 0 < i < d, and u € pa(v), then u € U{L; : k =
0,...,7—1}.

4. The nodes in the same level set should be independent; that is, there are no directed edges
within any level set. In other words, if v,u € V and v,u € L;, t = 0,...,d, and v # u, then
there should be no directed edge between v and wu.

5 Ifv € L, 0 < i < d, then there should be a path of length i from a given node u € Lj to v.
Furthermore, no path to v can be longer than length :.

6. The maximum length of a path in an ADG with (d + 1) level sets, L = {Lo, ..., Ly}, is d.

According to the definition and properties mentioned above, we notice that different ADGs can
give rise to the same level-sets structure; however, given an ADG, the level-sets structure should be
unique. This is an important property that differentiates the notion of level sets from other modern
graph-partition strategies (e.g., partitions to obtain minimal edges among partitions but maximal
edges within partitions; see Newman, 2004). Those types of graph partitions are not unique for a
given ADG.

Figure 1 shows an ADG with level-sets structure satisfying all the properties mentioned above. For
example, nodes v, and v, are in the minimal level set Ly, because they have no parents; there
is no directed edge within each level set; directed edges always go from lower-order level sets to
higher-order level sets, and so forth.

From the definitions and properties of level sets given above, we can see that the level-sets structure
of an ADG involves much more graphical information than just the number of edges found in the
E-R model. In order to specify the structure between level-sets, we introduce the connection matrix,
but we first need to define the adjacency matrix.

From Lauritzen (1996), we can use an adjacency matriz, Y = [yijlnxn, to uniquely specify the
structure of an ADG with n nodes:

(8)

e 1, if there is a directed edge from v; to v;, where v;,v; € V;
Yis 0, otherwise.

Similarly, we can define a connection matriz, C = [cui|(a+1)x(@+1), t0 specify the structure between
level sets. Consider a given ADG with (d + 1) level sets, L = {Lo,...,Lg}. If there is at least
one directed edge going from one of the nodes in level set L; to one of the nodes in level set L;,
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Figure 1: An ADG with 7 nodes and 4 level sets

1 < j, then we say that there is a directed connection going from L; to L;. Otherwise, if there
is no directed edge between nodes in two different level sets within an ADG, we say that there
is no connection between the two level sets. Thus, we define the connection matrix of level sets,
L = {Ly,...,La}, as a (d + 1) x (d + 1) matrix, C = [cki](a+1)x(a+1), as follows:

1, if there is a directed connection from L; to L;, where L;, L; € L;
0, otherwise.

(9)

Cht1l+1 = {

For example, the connection matrix C of the ADG with seven nodes and four level sets in Figure
1 can be written as,

(10)

Q

I
o O @ S
O OO -
O O = =
O = O =

Now we shall discuss modeling strategies for ADGs. As mentioned before, the ERGM family is

popular for modeling ADGs. A typical ERGM defines the probability of an ADG as (Hunter and

Handcock, 2005):

exp[©7g(G)]
c(©)

where © is a vector of parameters; g(G) is a vector of graph statistics that is sufficent for (11);
and ¢(©) is the normalizing constant. For example, the E-R model is a specific case of an ERGM
defined as:

P(G|®) = , (11)

P(G|6) o exp[-6|G], (12)

where |G| is the number of edges in G, # > 0, and €’ is interpreted as the probability of having
an edge between any pair of nodes in the ADG G. Therefore, the E-R model implies that the
probability of having an edge between each pair of nodes is equal and independent within a graph.
Although the ERGM family allows inclusion of other graphical structures, research on what type of
graphical statistics can be used in the ERGM is still in its infancy. Furthermore, the ERGM family
is difficult to apply to high-dimensional networks.
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We shall propose level-sets models below to avoid these limitations of ERGMs. Rather than directly
modeling the joint probability distribution of every individual node in the graph, our strategy is
to first model the probability distribution of the unique level-sets structure of an ADG; then, we
model the probability distributions of ADGs conditional on its level-sets structure. This uses infor-
mation on the children’s and parents’ directed edges contained in the level-set structure. Also, this

conditional-probability modeling strategy helps us avoid the strong assumptions made in defining
ERGMs.

We define the level-sets model as follows:
P(G|®) = P(G|C,©)P(C|L,®)P(L|V,©)P(V|O) (13)

Since the adjacency matrix Y and the ADG G are in one-to-one correspondence, we also can write
equation (13) as
P(Y|®) = P(Y|C,©)P(C|L,®)P(L|V,0)P(V|O) (14)

where, © is a vector of parameters (e.g., Ellis and Wong, 2008).

Based on the level-sets model (13), we develop an associated algorithm that can efficiently generate
ADGs. Compared to the E-R model, our level-sets model is appealing as a flexible prior distribution
for Bayesian inference on ADGs. Zhuang and Cressie (2011) show how this algorithm can be used
in Bayesian inference for multivariate distributions defined by ADGs and eventually chain graphs.
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